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Generation of firebrands from various fuels has been well-studied in the past decade.

Limited details have been released about the methodology for characterizing firebrands

such as the proper sample size and the measurement process. This study focuses

on (1) finding the minimum required sample size to represents the characteristics of

the population, and (2) proposes a framework to facilitate the tedious measurement

process. To achieve these goals, several firebrand generation tests were conducted at a

boundary layer wind tunnel with realistic gusty wind traces. Firebrands were generated

from burning structural fuels and collected in 46 strategically located water pans. The

statistical analysis showed that the minimum required sample size based on the chosen

statistical parameters (standard deviation, confidence interval, and margin of error) is

1,400 for each test. To facilitate characterizing such a large sample of firebrands, an

automated image processing algorithm to measure the projected area of the firebrands

was developed, which can automatically detect the edges of the background sheet,

rotate the photo if its tilted before cropping, detect edges of firebrands, remove erroneous

particles (e.g., ash) and finally measures the projected area. To facilitate the weighing

process, a Gaussian process regression was performed to predict the mass based on

projected area, traveling distance and wind speed. The model can predict the firebrand

mass within 5% error compared to the measurement. This framework and model can

provide a probabilistic range of firebrand characteristics over the continuous range of the

collection region.

Keywords: firebrand, machine learning, Gaussian process regression, image processing, ember, wildfire, WUI

INTRODUCTION

Large-scale wildland and wildland-urban interface (WUI) fires have happened more frequently
in recent years. Direct flame contact, radiant heat, and burning firebrands (or embers) have been
identified as three principal ways that cause fire spread in the wildland and WUI (Clements, 1977;
Maranghides andMell, 2011; Koo et al., 2012; Caton et al., 2017). However, only burning firebrands
can initiate a new spot fire at distances further than 60-m away from the main fire front (Cohen,
2008). Spotting due to firebrands, also referred as the firebrand phenomenon, can overpower
fire suppression efforts and become the dominant fire spread mechanism (Koo et al., 2010). The
spotting process includes three phases: firebrand generation, transportation, and ignition of the
recipient fuel.

The ability of a firebrand to travel far way and start a new fire is a function
of its physical properties and the environmental parameters (Tohidi et al., 2015).
Primary physical properties of a firebrand include mass, size (aerodynamic) shape,
surface temperature, heat flux, and the heat of combustion of the fuel. The shape and
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dimensions are critical factors in firebrand transport. In previous
studies, firebrand size has been treated as a 2-dimentional
parameter that is represented by the projected area of the
firebrand (Manzello et al., 2012b; Zhou et al., 2015; Suzuki and
Manzello, 2016; Caton et al., 2017; Manzello and Suzuki, 2017).
The mass and heat of combustion determine the total available
heat energy from the firebrand. Surface temperature and heat
flux play an important role in heat transfer from the firebrand
to the recipient fuel. Environmental conditions influence all
three phases of the firebrand phenomena. Key parameters
include relative humidity, environmental temperature, wind
speed, terrain conditions, and the condition of the recipient fuel.
Among the environmental parameters, wind speed is critical
effecting breakage of burning fuel leading to the generation of
firebrands, transport mechanism (e.g., travel distance) and the
burning behavior.

Several studies have been conducted to obtain a better
understanding of the firebrand generation in structural fires.
The methodology for characterizing firebrands in this work was
expensive (time/labor/money). In the 1960’s Vodvarka conducted
full scale building fire tests (Vodvarka, 1969, 1970) and used
plastic sheets downwind of fire to measure size of the firebrands.
The hot firebrands melted through the sheets, and by measuring
the size of the remaining hole, the projected area and traveling
distance of the firebrands were calculated. A challenge of this
method is distinguishing between measurement of individual
firebrands and accumulations when multiple land in the same
hole. Recent work has employed water-filled pans to collect and
quench firebrands (Manzello et al., 2012a,b; Suzuki et al., 2012,
2013, 2014; Manzello and Suzuki, 2013, 2017; Zhou et al., 2015;
Suzuki and Manzello, 2016). Quenching firebrands preserves
their mass and shape at the point of landing which changes as
the firebrand burns. The center of each pan is considered as the
landing position for each ember, so the data is discrete. The wet
pan method also requires the drying of the collected firebrands
which involves handling the fragile firebrands and may break
some firebrands during handling and drying if not done properly,
and thus contribute to measurement uncertainties and errors.

The process of measuring or characterizing the physical
properties of firebrands can be more tedious than conducting the
tests because the burning fuel generates many firebrands which
need to be individually measured. For a single experiment the
number of generated firebrands in the complete sample (or the
whole firebrand population) is often extremely large. This makes
the complete collection, enumeration, and characterization of the
whole firebrand population impractical or impossible. Sampling
techniques play a pivotal role in the validity of the measurements.
Statistical sampling should be used so that a subset of
manageable size can be used to represent the whole firebrand
population. Ideally, a firebrand collection process should have
unbiased representative firebrands during the sampling process.
In practice, only firebrands larger than a certain size can be
collected and enumerated by researchers. For example, in some
early firebrand studies, expressions such as “unaccountable” or
“many” were used for very small firebrands (Vodvarka, 1970).
In strict terms, firebrand collection is not a random sample
selection process because some firebrand (i.e., the very small

ones) of the population will not be selected. This exclusion bias
is a source of uncertainty and brings limitations on how much
information a firebrand sample can provide about the whole
population. The sample of the full-scale building component
experiments conducted in the past varied between 50 and 500
firebrands (Manzello et al., 2012b; Suzuki et al., 2012; Suzuki and
Manzello, 2016; Manzello and Suzuki, 2017). The vital question
is how many firebrands are needed to sufficiently quantify
the characteristics of entire population of the firebrands in an
experiment. If the answer suggests a sample size far larger than
500, the efficiency of the current measurement methodology to
count and measure thousands of firebrands must be explored.
Furthermore, it is not practical to cover the entire area of the
downwind of fire in water pans to catch all the firebrands;
therefore, no information could be obtained at the uncovered
locations. There is a need to determine (or at least estimate)
different characteristics of the firebrands at those spots.

To address these issues, this study aims to develop and
test a new statistics-based framework that incorporates a
machine learning predictive model for the sampling and
measurement processes in firebrand generation experiments
so that the obtained firebrand data can achieve the desired
level of statistical reliability with increased efficiency. To
achieve this goal, sampling based on statistical analysis was
performed to determine a statistically acceptable sample
size for each experiment. To test the proposed framework,
firebrand generation experiments were performed, firebrands
were collected, and their physical properties were measured. The
process of measuring the mass and projected area is a tedious
task, so an advanced automated image processing algorithm
was developed to minimize the human effort in measuring the
projected area. By incorporating a machine learning predictive
model into the framework, instead of physically weighing the
firebrands, their mass can be estimated based on the desired level
of accuracy.

The structure of this paper is as the followings. The
framework and firebrand generation experiments are explained
in Section Statistics-Based Framework and Firebrand Generation
Experiments. This includes information about specimens and
test facility, firebrand collection design, test procedures, and
sampling design. Section Firebrand Characterization addresses
themeasurement and characterization of the collected firebrands,
including their traveling distance, mass, and projected area.
In this section, an advanced automated image processing
algorithm is presented and then the uncertainty analysis
of the measurements is discussed. In Section Firebrand
Characterization Results, the framework for employing machine
learning is presented to minimize the tedious weighing process.

STATISTICS-BASED FRAMEWORK AND
FIREBRAND GENERATION EXPERIMENTS

Proposed Framework
The overview of the framework is depicted in Figure 1. Projected
area and mass are the most tedious parameters to measure. To
ease the former one, an image processing algorithm is developed.

Frontiers in Mechanical Engineering | www.frontiersin.org 2 July 2019 | Volume 5 | Article 43

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering#articles


Hedayati et al. Measurement Framework to Characterize Structural Firebrands

FIGURE 1 | The overview of the framework.

To facilitate the weighing process, Gaussian process regression
is employed.

Specimens and Test Facility
Several parameters were considered in the experimental design
including burning fuel material, geometry, layout of the pans
and wind speed. In a set of experiments, several full-scale
structural assemblies with different materials were tested under
different environmental conditions as part of a multi-year,
multi-institutional project. For the purpose of this paper, only
firebrands generated from 90◦ corner assemblies at three different
wind speeds were used. The corner assemblies were built from
typical residential building construction materials in wildfire
prone areas of the United States. Corner assemblies were made
with solid or composite wood horizontal lap attached to a ½-
in. nominal oriented strand board (OSB) or CDX plywood. A
picture of a burning corner assembly is shown in Figure 2A.
Each wall in the corner assembly is 32-in. (81-cm) long, using
2-in.× 4-in. (5- × 10-cm) southern yellow pine (SYP) framing,
16-in. (41-cm) on center. A nominal ½-in. (1.3-cm) gypsum
board is attached to the non-fire exposed walls. Wall sheathing
on the fire-exposed side is nominal ½-in. (1.3-cm) OSB. Siding
on the fire exposed side is solid cedar wood. All the samples
were conditioned in a kiln to reach the nominal moisture content
of 5% prior to firebrand production experiments. Fuel packages
were ignited with custom-build natural gas burners. These tests

were performed in the test chamber at the Insurance Institute for
Business & Home Safety (IBHS) Research Center in Richburg,
South Carolina, USA. The facility has a 148-ft. × 148-ft (45- ×
45-m) open-jet wind tunnel with a clear height of 59-ft. (18-m).
The wind flow is produced using arrays of 105 approximately 6-
ft. (1.8-m) diameter fans with active and passive control elements
to simulate atmospheric boundary layer flow up to 130-mph (58-
m/s) wind speeds 33-ft. (10-m) above the ground (Standohar-
Alfano et al., 2017). The three designated fluctuating wind speed
levels used in the experiments are: low (average 12-mph or 5-
m/s), medium (average 25-mph or 11-m/s), and high (average
40-mph or 18-m/s).

Firebrand Collection
A rectangular area of approximately 2- × 15-m downwind
of fire specimen was available in the test chamber for water
pans. Figures 2B,C depict the layout of the water pans in this
collection area. Wake flows immediately downwind of the object
are strong which may cause a large number of firebrands to
land a short distance from the burning object so six rows of
pans were placed immediately downwind of the fuel package.
Assuming a symmetrical distribution of firebrands about the
central line water pans were located on alternate sides for rows 6
through 17 to maximize distance covered. In total, 46 aluminum
water pans, each with a capture area of 0.65- × 0.45-m, were
strategically located to optimize collection of firebrands. Window
screens (mesh) were submerged in each water pan to facilitate the
collection of firebrands.

Test Procedure
The ignition source was an arrow shaped stainless steel burner
placed at the base of the insider corner assembly. Test start time
was at burner ignition with fans on. Burner was removed after
10min and total test time was 30min. Three corner assembly
fuel packages were tested at each wind speed. Firebrands at each
wind speed were collected after all three tests. The firebrands
were oven-dried to reach zero moisture content level and then
were sealed in plastic bags and clearly marked for each test.
The number of firebrands in one bag was intentionally limited
to ensure that only one layer of firebrands was stored in one
bag. The bags were separated from each other with layers of
paper towels and were gently placed in boxes to avoid firebrand
breakage during transportation to the University of North
Carolina at Charlotte. Although extreme care was taken during
transportation and handling, some of them might have been
broken. We recognize this is a source of uncertainty in this study.

Sampling
In order to estimate the characteristics of the entire population,
either simple or stratified random sampling can be used.
Stratified random sampling is suggested when there are different
groups in the population (de Vries, 1986). Since each of the
experiments is considered as a separate group, stratified sampling
was chosen for this research. Assuming normality (Zhou et al.,
2015), the sample size can be obtained using the confidence
interval relation which requires defining the sample standard
deviation, confidence interval and margin of error (Hosmer and
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FIGURE 2 | (A) Burning sample (corner assembly) inside the wind tunnel. (B) Layout of the water pans. (C) Water pans downwind of fire.
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Lemeshow, 1992). The larger the standard deviation becomes,
the larger the sample size will be. The correlation of sample size
with margin of error, however, is reversed. Since no information
about the standard deviation of tests was available, the average
of standard deviations of firebrands in previous studies (since
the 1960s) (Hedayati and Zhou, 2017) was used, which showed
the minimum threshold of 0.42 grams. However, to be more
conservative, a standard deviation of 0.55 grams was used for this
study. The margin of error was set to be 0.03 which is smaller
(and thus more reliable) than the typical value of 0.05. Based on
these requirements the sample size estimator function of Minitab
suggests approximately 1,300. To be conservatives the minimum
sample size was specified as 1,400 firebrands for each experiment.
The sample included firebrands from all water pans which in
some cases exceeded the minimum size. In this study, a total of
4,415 firebrands were collected and analyzed: 1,400 at idle, 1,520
at medium speed, and 1,495 at high wind speed.

FIREBRAND CHARACTERIZATION

Three key parameters of firebrand were investigated:
traveling distance, mass, and projected area. The first two
are straightforward to measure and are grouped together
in Section Traveling Distance and Mass. The technique for
measuring projected area is explained separately in Section
Projected Area.

Traveling Distance and Mass
Traveling distance represents the horizontal distance from the
point the firebrandwas generated to where it lands. For these tests
the travel distance can be calculated by over the straight length of
the straight line from the burning corner assembly to the center
of the collection pan which is known by the row and column
(as shown in Figure 2). The mass of the firebrand changes from
when it is generated from the source fuel as it burns, and virgin
fuel combusts. When the firebrand lands the water quenches
the combustion and stops mass loss. Individual firebrands were
weighted using a digital balance (Sartorius H51, resolution of ±
0.0001 gram).

Projected Area
The size and shape of firebrands can impact the aerodynamics
during transport and accumulation geometry. In the literature,
there is not much detail about the calculation of the surface
area of the firebrands (Manzello et al., 2012a,b; Suzuki and
Manzello, 2016; Manzello and Suzuki, 2017). A new process
was developed to expedite measuring the projected area of
firebrands. Firebrands were placed on a white sheet which
provided a contrasting background to black objects. High-
resolution pictures were captures of each sheet using a Nikon
D5600 and light setup that provided adequate lighting from
three directions at 120◦ interval on the sheet to avoid shadows.
To increase the efficiency in measuring the projected area and
minimize human labor, a MATLAB code was developed to
automate the process, with the steps illustrated in Figure 3.
Images were processed to remove noise on the white sheet and
outside of it (Figure 3A). A histogram of the image colors was

stretched to adjust the contrasts. The algorithm detected the
edges of the sheet and calculated the angle between the edges
and the vertical axis (Figure 3B) and the image was rotated,
thresholded, and cropped to remove noises beyond the sheet
borders (Figures 3C,D). The thresholding value is a source of
uncertainty in the measurement which will be discussed in
Section Uncertainty in the Measurement. In Figure 4.1, two
sources of noise can be observed; the scratches on the sheet
that occurred by scattering the firebrands on the sheets, and the
white ashes on the firebrands. In Figure 3E, both are removed,
and the borders are cleaned so the remaining objects (white
pixels) were individual firebrands. Each firebrand was labeled
(Figure 3F), and the projected area of each firebrand with respect
to Object 1 (rectangle with known area) were calculated. Using
this automated method, counting and calculating the projected
area of hundreds of firebrands can be accomplished in a few
seconds. Note that in the traditional method, each of these
steps were done manually which increases the measurement
time significantly.

FIREBRAND CHARACTERIZATION
RESULTS

The measured firebrand data are summarized in Table 1. In
addition to mean, standard deviation, median, and correlation
values, the skewness of each parameter is also provided.
Correlation value of positive one indicates a direct relationship
between the parameters while negative one indicates an inverse
relationship. Zero correlation means no relation between the
parameters exists. The correlation values in the table show that
mass and projected area are strongly correlated, as observed
in some experimental (Manzello et al., 2012b; Suzuki and
Manzello, 2016; Manzello and Suzuki, 2017) and theoretical
studies (Tohidi et al., 2015) The corrections between mass and
traveling distance as well as projected area and traveling distance
are small. The mean and median of travel distance, projected
area, and mass increased as wind speed increased. Wind speed
can have competing effects on generation of firebrands, higher
wind speed can force departing larger firebrands and at the
same time will increase the combustion rate during the flight.
Since the flying distance in this experiment was limited by
the dimensions of the test chamber, Table 1 suggests that
stronger wind causes larger firebrands to depart which can
travel further away. Also, the standard deviation of projected
area and mass increased when wind speed increased, which
implies that the range of variation in the size and mass of
the firebrands was larger at stronger winds (more variability in
the sample).

Measuring the density of firebrand can be a challenging task,
but worth investigating. Strong correlation between mass (m)
and projected area (a) suggests that there is a linear correlation
between them. This correlation can be approximated asm= K a,
where K is a constant. Since we know that m = (ρh)a (where ρ

is the density and h is the thickness of a firebrand), recording the
thickness of firebrands can provide useful information about the
distribution of the density of firebrand.
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FIGURE 3 | Detailed steps to calculate the projected area. (A) Original image. (B) Edge detection. (C) Rotation. (D) Corner detection and cropping. (E) Noise removal.

(F) Labeling firebrands with known projected areas.

Uncertainty in the Measurement
To investigate the uncertainty of the projected areameasurement,
different geometries have been plotted on a sheet with known
pixel numbers and areas. As Photoshop plots with three
significant digits (0.01-cm2 resolution), the calculations also
presented three significant digits. Miscounting the pixels typically
happens at the borders of an object, which depends on the
user-defined binary image threshold. The threshold defines how
sensitive the MATLAB code should be when it converts different
shades of gray in an RGB image to a binary one. To investigate
the effects of thresholding reference objects with various and
known pixel configurations were used (Figure 4). At a granular
level angular and curved edges of these objects are square pixels
which effects the uncertainty of the measurement based on the
thresholding value. A thresholding value (α) to 0.20 resulted in
loosing numerous pixels in counting (Figure 4B) while a value

of 0.9 led to identifying any dark point on the sheet as an object,
which can be seen in Figure 4C.

To find the proper range for α in which the minimum error-
difference between the best estimated value and the measured
value- occurs, the surface area of the objects in Figure 4A were
calculated at several thresholding levels (from 0.1 to 1 with 0.1
intervals). The minimum relative error happens when 0.6< α

<0.8. This threshold range was validated on a sample of 27
firebrands. Using the same code, the differences between the
projected areas were calculated at α = 0.6 and α = 0.8 for each
firebrand. It was determined that the maximum difference is
0.11-cm2 which can be considered as the uncertainty of the
projected area for each measurement.

The standard uncertainty of the measurement can be
calculated by dividing the standard deviation by the square root
of the sample size. The standard uncertainty of measuring mass,
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TABLE 1 | Summary of the measured parameters at different mean wind speeds.

Physical quantity Statistical

quantity

Low wind

(5.36 m/s)

Medium

wind (11.17

m/s)

High wind

(17.88 m/s)

Flying distance (m) Mean 2.71 3.2 5.07

S. D. 3.72 3.24 3.88

Skewness 0.47 0.52 0.27

Median 1.11 1.99 3.20

Projected area

(cm2)

Mean 2.10 3.90 4.87

S. D. 2.72 6.48 7.87

Skewness 5.17 6.62 13.47

Median 1.26 2.08 2.99

Mass (g) Mean 0.09 0.25 0.38

S. D. 0.24 1.28 1.44

Skewness 7.63 25.37 21.99

Median 0.02 0.06 0.14

Mass and area correlation 0.83 0.72 0.90

Mass and flying distance correlation −0.20 −0.11 −0.07

Area and flying distance correlation −0.24 −0.20 −0.10

traveling distance, and projected area were determined to be
0.0169-grams, 0.22-m, and 0. 0.09-cm2, respectively. Among the
three parameters traveling distance measurements has additional
sources of uncertainty because a two-dimensional collection
area was reported as a single point (the center of the pan).
For this case, the theoretical uncertainty is rounded up to the
measurement resolution which is half of the width of the water
pans (0.22m).

As mentioned earlier, skewness is an important parameter
to study asymmetry of Probability Density Functions (PDFs).
Equation (1) shows that the uncertainty in skewness depends on
the uncertainties of the mean and individual firebrands.

b =

1
n

n
∑

i=1
(xi − x̄)3

[

1
n−1

n
∑

i=1
(xi − x̄)2

]3/2
(1)

The uncertainty can be calculated with Equation (2), where and
are already calculated as 0.05 and 0.11, respectively.

uc =

√

(
∂b

∂ x̄
u(x̄))

2

+ (
∂b

∂xi
u(xi))

2

(2)

The numerical values for the derivatives are shown in Equation
(3) (work shown in Appendix).

n
∑

i=1

∂b
∂ x̄

∣

∣

x̄=3.62,n=4414 = 0.48

n
∑

i=1

∂b
∂xi

∣

∣

x̄=3.62,n=4414 = 2.64
(3)

The numerical value for the combined uncertainty for skewness
reduces to 0.29-cm2. Employing a similar approach, the

FIGURE 4 | Investigating the effects of thresholding; (A) original image,

(B) low thresholding value, (C) high thresholding value.

uncertainty in measuring the skewness for mass and traveling
distance are 0.047-gr, and 0.33-m, respectively.

Mass Prediction Model
Employing the proposed algorithm in Section Projected Area,
measuring the projected area becomes a straightforward task.
Measuring the mass, however, remains a tedious task because
each of the 4,415 firebrands must be weighed individually using
the high-precision balance. Machine learning, a type of artificial
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intelligence that enables the computer to predict or classify a set
of data (Carbonell et al., 1983), can be employed to expedite the
weighing process. There are several different algorithms available
to predict (regress) a variable with machine learning techniques.
For this project Gaussian process regression is employed which
is useful when the relationship between the predictors and
the predicted value is unclear (Williams and Rasmussen, 1996;
Bernardo et al., 1998). This type of regression also works well
for continuous regressed values, such as mass. This method
provided the best estimated value for the prediction as well as
a probabilistic range defined the certainty about the predicted
values. The mathematical formulation of the Gaussian process
regression is beyond the scope of this paper; however, the method
is explained briefly in the following for the purpose of this study.

Gaussian Process Regression
The idea of Gaussian process regression (Rasmussen, 2003;
Rasmussen and Williams, 2006) is the extension of probability
distribution of numbers to the probability distribution of
functions. In this study four attributes describe each firebrand,
where the obtained data set can be analyzed in two different ways.
The conventional way is to see all the points in a four dimensional
space. The alternative look is to consider them as the values
of a function sampled at four points. In the first perspective,
points can be chosen from a probability distribution which are
typically determined by a mean vector and a covariance matrix.
In the second analyzation, we can have a probability distribution
of functions determined by mean and covariance functions.
This covariance function depends on the Kernel function which
describes the influence of each point on its neighbors.

To predict the value of an input that the model has not
yet seen before (validation subset), Gaussian regression built
a multidimensional normal distribution with the seen data
(training subset). In other words, in order to regress the n+1st

value, an n dimensional normal distribution is built. Having
conditioned (sliced) the multivariate PDF, the dimensions of the
PDF reduces and ultimately the most probable value, as well
as a probabilistic range for the prediction, can be estimated
(Bernardo et al., 1998). The probabilistic range depends on the
covariance function between the inputs that the user provides for
the algorithm.

Before discussing the results of the predictive model, it is
necessary to address the effects of the training and validating
subsets on the model. The training subset is used to build a model
to predict the response value and the validation set is utilized
to assess the accuracy of the build model based on the training
data set. Typically, 70% of the data is implemented to train the
model and 30% is held out for the validation set (Rasmussen,
2003). However, the accuracy of the model heavily depends on
how the data is split and trained. Although one may have chosen
the subset elements randomly, it would be more accurate if the
division process was repeated for multiple times in a randomway
to minimize the dependency of the model on the subsets. This
process is known as cross validation (Refaeilzadeh et al., 2009).
In this method, the data would randomly be divided into k sets.
K-1 of the sets would be used to train and 1 will be saved for
validation. This process continues until all the subsets have been

employed for validation at least once (Refaeilzadeh et al., 2009).
The larger the k is, the more computational efforts we will have
but the model will be more robust.

Results and Discussion of the
Predictive Model
To evaluate the influence of different inputs on predicting the
mass of each firebrand, a decision tree model was built for the
different attributes in the data and uses them to split the data
into subsets (Safavian and Landgrebe, 1991). The obtained split
subsets are called pure if all the elements in that subset are
homogenous and called impure otherwise. Once all the predictors
are split, the algorithm starts to split each subset in order to find
the purest subset. Clustering the data into an absolutely pure
subset rarely happens.

The importance of the predictors to estimate the response
value is measured by the magnitude of a fraction; the numerator
is the purity of each branch and the denominator is the number
of binary decisions to reach the final step in each subset.
The larger the ratio is, the more significant that parameter is
to predict the response variable. Projected area, distance, and
wind speed are the three important predictors and mass is the
response variable. Having employed 3/2 Matérn kernel function
and taken the cross-validation factor equal to five (k = 5), a
Gaussian regression was built over the training set with the size
of 950.

Figure 5 depicts the results of the prediction of the mass
for the medium wind speed experiment. Red dots depict the
measuredmass with the balance, and the blue circles illustrate the
predicted value with the predictive model. The dotted line shows
the maximum probabilistic range that the mass of a firebrand
could be based on the given surface area, traveling distance, and
the wind speed. This can be helpful to simulate the worst-case
scenario and monitor how large/heavy a firebrand may be at any
desired distance or wind speed. Errors between measured and
calculated firebrand mass values can be seen in Figure 6.

To visualize the relative error between the predicted and
measured values, the validation subset is plotted for each
firebrand as illustrated in Figure 8. The model was able to predict
the mass within 0.5%. Although the individual values for mass
have been predicted sufficiently accurate, the individual values
do not play an important role when one intends to create a PDF
based on the data. Regardless of the underlying PDF, all the PDFs
require the mean, standard deviation and correlations between
the predictors which will be addressed subsequently.

The relative error of mean, standard deviation, and
correlations vs. the training size are plotted in Figures 7–10 with
a sample size of 1,400. In each figure, 5 and 10% error lines are
plotted with red dotted lines. What stands out in these figures is
that when setting the training size to 700, the model can predict
the mean, standard deviation and correlations of the mass
with <10% error. In other words, employing this model, the
results that one may obtain by counting 700 firebrands is <10%
deviated from counting 1,400 firebrands. Hence, employing this
technique can significantly reduce the labor (e.g., 50%) involved
in the measurement process.

Frontiers in Mechanical Engineering | www.frontiersin.org 8 July 2019 | Volume 5 | Article 43

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering#articles


Hedayati et al. Measurement Framework to Characterize Structural Firebrands

FIGURE 5 | Schematic of predicted and measured firebrand mass values.

FIGURE 6 | The error between measured and predicted firebrand mass values for unseen firebrands (validation subset index).

Figures 9, 10 show that the relative error starts increasing
when the training size is larger than approximately 900 samples, a
result of overtraining the model. In any regression problem, if the
complexity of the model increases, it is very likely that the model

is not capable of predicting the validation set very well. If the
model touches every point in the training set exactly, it involves
the fluctuations and noises in the training set and will be trained
without any uncertainty for the prediction. However, the model
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FIGURE 7 | Variation prediction of mean values for firebrand mass with sample size.

FIGURE 8 | Variation predication of standard deviation values for firebrand mass with sample size.

will lose the ability of predicting the response value for a new
unseen point. In Figures 7, 8, since the concept of the mean and

standard deviation is to subtract each point from the mean value,

the noise in the data set is reduced. For correlations in Figures 9,

10, when the training size gets larger than 900, the model losses
its accuracy to predict the mass and then the relative error in
calculating the correlations increases. From experimental data
the center of pans is the landing position of the firebrand; thus,

the data is inevitably discrete. Considering this fact, the calculated
correlation between themass and traveling distancemay have less
degree of accuracy comparing to other presented parameters.

CONCLUSION

In this study, experiments were conducted to generate firebrands
from burning corner assemblies (building materials) in a
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FIGURE 9 | Variation predication of firebrands’ mass and projected area correlation with sample size.

FIGURE 10 | Variation predication of firebrands’ mass and flying distance correlation with sample size.

boundary layer wind tunnel. A sample size of 1,400 firebrands
for each of the three experimental configurations was necessary
to determine the characteristics of the population. A process
for efficiently measuring traveling distance and projects area
was employed for a large sample size. An image processing
algorithm was developed to measuring project area of each

firebrand in batches. The projected area accompanied with
traveling distance and wind speed was used to train a predictive
model for estimating the mass of individual firebrands. The
comparison between the predicted mass and measured mass
shows a maximum error of 5%, confirming the accuracy
of the model. This framework provides a methodology
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for efficiently measuring travel distance and project area
along with a model that provides a probabilistic range
for the estimation of firebrand mass/projected area/flying
distance. Using this method for future testing will reduce the
resource demands for measuring large sample sizes and reliably
characterizing firebrands.
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APPENDIX

The details about the partial derivation of skewness is
presented below.
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